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Abstract

In the last few years it has been made clear to the research community that further improve-
ments in classic approaches for solving low level computer vision and image/video understanding
tasks, are difficult to obtain. New approaches start evolving, employing knowledge-based process-
ing, though transforming a priori knowledge to low level models and rules, are far from being
straightforward. In this paper, we examine one of the most popular active contour models, Snakes
and propose a snake model, modifying terms and introducing a model-based one that eliminates ba-
sic problems through the usage of prior shape knowledge in the model. A probabilistic rule-driven
utilization of the proposed model follows that copes with objects of different shape complexity and
motion, different environments, indoor and outdoor, cluttered sequences, cases where background
is complex (not smooth) and when moving objects get partially occluded. The proposed method
has been tested in a variety of sequences and the experimental results verify its efficiency.

Keywords: Model-based Snakes, rule-driven tracking, object partial occlusion.
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I. Introduction

Active contours, popularly known as snakes, have drawn special attention in the last
decade among the Computer Vision, Image and Video processing researchers. They employ
weak models, which deform in conformance with salient image features. The approaches
proposed in the literature focus on either the highest accuracy of estimating moving sil-
houettes or the lowest computational complexity.
Active contours (snakes) were first introduced by Kass et al. [18]. A snake is actually a
curve defined by energy terms, being able to deform itself in order to minimize its total
energy. This total energy consists of an ”internal” term, that enforces smoothness along
the curve, and an ”external” term, that makes the curve move towards the desired object
boundaries. Many variations and extensions of snakes have been proposed and applied to
certain applications [11], [6]. However, the majority of them faces three main limitations.
The first one is the quality of the initialization that is crucial for the convergence of the
algorithm. The second one is the need for parameter tuning that may lead to loss of
generality and the third one is the sensitivity to noise, clutter and occlusions.
During the last decade snakes and their variants are applied to motion segmentation [5],
[20], [3], [25], object detection, localization and tracking in video sequences [28], [26], [34],
[8]. Most approaches require an initial shape approximation that is close to the objects’
of interest boundaries [4]. The straightforward incorporation of prior knowledge in such
models is a very interesting property that makes them appropriate for capturing case-
dependent constraints. Constraining the active contour representation to follow a global
shape prior while preserving local deformations has drawn the interest of the research
community. Cootes et al. [7] introduce the term “Active Shape Models” to compensate
for the extension of classical snakes with global constraints. They describe a technique,
which allows an initial rough guess for the best shape, orientation, scale, and position
to be refined by comparing a hypothesized model instance with image data, and using
differences between model and image to deform the shape. The results demonstrate that
their method can deal with clutter and limited occlusion. An efficient method towards the
combination of low- and high- level information in a consistent probabilistic framework is
proposed by Isard and Blake [15], [16]. The result is highly robust tracking of agile motion
in clutter that runs in near real-time. The CONDENSATION algorithm they introduce
is a fusion of the statistical factor sampling algorithm for static, non-Gaussian problems
with a stochastic differential equation model for object motion. Rouson et al., [31] propose
a two-stage approach using level-set representations. During the first stage a shape model
is built directly on the level set space using a collection of samples. This model allows
shape variabilities that can be seen as an “uncertainty region” around the initial shape.
Then, this model is used as a basis to introduce the shape prior in an energetic form.
In the proposed approach we consider a knowledge-based view of active contour models,
which is appropriate for handling object tracking in partial occlusion, as well as tracking
objects whose shape can be approximated by parameter-based models. We use shape
priors and set them in a rather loose way to preserve the required deformations and intro-
duce an uncertainty region around the contour to be extracted, which is based on motion
history. In order to cope with partial occlusion we use a rule-driven approach and pro-
vide several results. The algorithm seems to provide efficient solutions in terms of both
accuracy and computational complexity. Head tracking has been selected as a test-bed
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application of the integrated model; head is approximated by shape priors derived from
an ellipsoid. This approach provides the constraint that the desired object is not strongly
deformed in successive frames of video sequences, which is actually valid for most cases.
The paper is organized as follows. In the next section we review the classic snake model
and provide information on the adopted model-based approach. Section III describes in
detail the proposed tracking approach and section IV provides the experimental results.
Future research directions are given in section V.

II. Snake Model

In general, Snakes concern model and image data analysis, through the definition of a
linear energy function and a set of regularization parameters. Their energy function con-
sists of two components, the internal or smoothness-driven one, which enforces smoothness
along the snake, and the external or data-driven component, which depends on the image
data according to a chosen criterion, forcing the snake towards the object boundaries. The
goal is to minimize the total snake energy and this is achieved iteratively, after consider-
ing an initial approximation of the object shape (prototype). Once such an appropriate
initialization is specified, the snake can converge to the nearby energy minimum, using
gradient descent techniques. According to that formulation, a snake is modeled as be-
ing able to deform elastically, but any deformation increases its internal energy causing a
“restitution” force, which tries to bring it back to its original shape. At the same time,
the snake is immersed in an energy field (created by the examined image), which causes
a force acting on the snake. These two forces balance each other and the contour actively
adjusts its shape and position until it reaches a local minimum of its total energy.
Let us consider a snake Csnake defined by a set V(s) of N ordered points (snaxels) {Vi(s)
| i=1,2,...,N}, corresponding to the positions (xi(s), yi(s)) in the image plane (s is a pa-
rameter denoting the normalized arc-length in [0 1]. For simplicity in the following the
parameter s will be mentioned only when necessary). The total energy function Esnake

is then defined by the weighted summation of the internal energy Eint, corresponding to
the summation of the stretching and bending energies of the snake, and the external one,
which indicates how the snake evolves according to the features of the image.

Esnake(V) = a1 · Eint(V) + a2 · Eext(V) (1)

Eint(V) =
N∑

i=1

eint(Vi) (2)

Eext(V) =
N∑

i=1

eext(Vi) (3)

where eint(Vi) and eext(Vi) are the internal and external energies corresponding to point Vi,
and the procedure of snake’s convergence to the object boundary is given by the solution
of its total energy minimization:

Csnake = arg min[a1 · Eint(V) + a2 · Eext(V)], (4)

where a1 and a2 are the snake’s regularization parameters.
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Fig. 1. Curvature and point density distribution of a given contour. (a) The snake is locked at
car boundaries, whereas the circled areas denote parts of the curve of high curvature and point
density, (b) curvature distribution and (c) point density distribution.

A. Internal Energy

The internal energy Eint has been given various definitions in the literature [9], [14],
[29], depending on the application criteria. In our approach we define the internal energy
in terms of the snake curvature CUsnake and its point density distribution DVsnake:

CUsnake =
ẋ · ÿ − ẍ · ẏ
(ẋ2 + ẏ2)

3
2

(5)

DVsnake =
√

ẋ2 + ẏ2 (6)

where (x, y) parameterize the curve as Vi = [xi, yi] and the first and second derivatives
of (x, y) denote the velocity and the acceleration along the curve: (ẋ = dx

ds , ẏ = dy
ds ) and

(ẍ = d2x
ds2 , ÿ = d2y

ds2 ). Thus, the internal energy of the snake is defined as:

eint(Vi) = |CUsnake(Vi)|+ DVsnake(Vi), (7)

where | · | denotes the magnitude of the corresponding quantities. In the discrete case,
the value of the curvature at the k-th point is calculated using the neighboring points
to each side of it; the sign of the curvature is positive, if the contour is locally convex,
and negative if concave. Moreover, curvature distribution/function uniquely defines a
propagating curve at different time instances, although it is not affine-invariant and thus
it is inappropriate in object recognition problems [14], [1]. In the proposed snake model
the points constituting a curve are not equally spaced and thus the distances between
successive points represent the local elasticity of the snake. Finally, it should be noted
that curvature and point density terms are often used in the literature [18], [23], [29], and
in the present work they are used both as smoothness and curves similarity criteria, as
described in the following sections. Fig. 1 illustrates the curvature (curve smoothness)
and point density (elasticity) distributions of a given snake.

A.1 Prior Model Constraints

The inclusion of a global shape model biases the snake contour towards a target shape,
allowing some selectivity over image features. In several applications the general shape
and possibly the location and orientation of objects is known and this knowledge may
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be incorporated into the deformable adaptive contour in the form of initial conditions,
data constraints, constraints on the model shape parameters, or into the model fitting
procedure. However, for efficient interpretation, it is essential to have a model that not
only describes the size, shape, location and orientation of the target object but that also
permits expected variations in these characteristics.
A number of researchers have incorporated knowledge of object shape into deformable
models by using deformable shape templates. These models usually use global shape
parameters to embody a priori knowledge of expected shape and shape variation of the
structures and have been used successfully for many applications of automatic image in-
terpretation. An excellent example in computer vision is the work of Yuille et al. [35], who
construct deformable templates for detecting and describing features of faces, such as the
eye. Staib et al. [32] use probability distributions on the parameters of the representation
and bias the model to a particular overall shape while allowing for deformations. Boundary
finding is formulated as an optimization problem using a maximum a posteriori objective
function. A model-based snake that is directly applicable in image space as opposed to
parameter space is proposed in [10]. This method is simple and fast and therefore fits
well to our intention to extend the previous formulation with a model prior constraint.
We mention here that our goal is to illustrate the increased robustness of the proposed
method provided by the inclusion of shape information rather than incorporating a novel
shape prior constraint representation.
We formulate the model energy function by using a slightly different shape modeling than
the one adopted in [10]. Therefore, we define the constraint energy term Emodel(V(s)) as:
Emodel(V(s)) = λ · 1

2 ·
∑N

i=1 emodel(Vi(s))

= λ · 1
2
·

N∑

i=1

{Vi(s)−model(Vi(s))}T · {Vi(s)−model(Vi(s))}, (8)

where λ is parameterized, since it can vary with position, and eq. (7) is reformulated as,

eint(Vi) = |CUsnake(Vi)|+ DVsnake(Vi) + emodel(Vi) (9)

As an example, a generalized ellipse represented by eq. (10) is used as a model (modelellipse)
here. Ellipse is a typical model for human faces and therefore is appropriate for head track-
ing, which is our test-bed application.

modelellipse(V i(s)) =

[
a · cosϑ · cos(2πs− ϑ)− b · sinϑ · sin(2πs− ϑ)
a · sinϑ · cos(2πs− ϑ) + b · cosϑ · sin(2πs− ϑ)

]
(10)

where a and b are the minor and major axes respectively and ϑ is the ellipsoid rotation.
The model should take scaling, translation and rotation under consideration. In order
to meet previous requirements, we base the minor, major axes and rotation calculation
on a statistical representation of an ellipsoid as the covariance matrix S derived from the
distribution of the last recovered (previous frame) solution points.

S = [e1 e2] ·
[

λ1 0
0 λ2

]
·
[

e>1
e>2

]
(11)
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Fig. 2. Proposed model, constraining the obtained solutions to the application of the human head
modeling and tracking.

The eigenvalues λ1 and λ2 (λ1 ≥ λ2) correspond to each of the principal directions e1

and e2, respectively. The eigenvalues determine the shape of the ellipsoid, while the
eigenvectors determine the orientation as shown in Fig. 2

B. External Energy

Regarding the external energy term, in most approaches, for each point Vi, it is defined
as:

eext(Vi) = 1− |∇Gσ∗I(xi, yi)| · |g(Vi) · n(Vi)| (12)

where |∇Gσ∗I(xi, yi)| denotes the magnitude of the gradient of the image convolved with
a Gaussian filter, of variance σ at point (xi, yi) corresponding to the snaxel Vi; g(Vi) is
the respective gradient direction and n(Vi) is the normal vector of the snake at the snaxel
Vi.
The common problems in snake models, is the presence of noise, background edges close to
object boundaries and edges in the interior of the desired object. These problems flow from
the definition of the external energy and the Laplacian-of-Gaussian (LoG) term ∇Gσ∗I,
especially in cases where the initialization is not close enough to object boundaries. For
that reason, snakes turn out to be efficient only in specific cases of images and video
sequences. In the proposed model, another term is introduced instead, minimizing the
local variance of the image gradient and preserving the most important image regions.
This is achieved through morphological operations leading to a modified image gradient.
In particular, the expression |∇Gσ∗I(xi, yi)| is replaced by a modified image gradient Gm

and the image-data criterion is strengthened through the the square of Gm:

eext(Vi) = 1−G2
m · |g(Vi) · n(Vi)| (13)

To obtain the modified image gradient, we first pre-smooth the image with a non-linear
morphological filter, called ASF (Alternating Sequential Filter) [21], and we extract the
morphological image gradient. The ASF used in our model is based on morphological area
opening (◦) and closing (•) operations with structure elements of increasing scale. The
main advantage of such filters is that they preserve line-type image structures, which is
impossible to be achieved with e.g. median filtering. Fig. 3 illustrates the performance
of a frame’s pre-smoothing with the proposed ASF: it can be clearly seen that noise is
eliminated and the most important edges are preserved. More details can be found at
[33]. Fig. 4 illustrates the differences between the two image-data criteria |∇Gσ∗I(xi, yi)|
and Gm, presented in equations (12) and (13). It can be seen in Figs. 4(b,c) that the
proposed procedure clearly suppresses noise and retains the most important edges of the
examined image, whereas Figs. 4(d,e) illustrate the difference between image gradient and
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Fig. 3. Frame pre-smoothing with the proposed Alternating Sequential Filter: (a)original frame
and (b) filtered frame.
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Fig. 4. Differences between the image-data criterion using the image gradient and the proposed
one. (a) Original image, (b) image gradient and (c) modified image gradient, (d) image gradient
computed along a randomly chosen row shown in (a) and (e) modified image gradient computed
along the same row.

the proposed modified gradient, computed along a randomly selected image line.
Fig. 4 clearly shows the advantages of the proposed external energy term for edge-

based methods, in terms of noise reduction and preservation of the most important edges.
Comparing this external energy with related work found in the literature, except for the
commonly used LoG-based definitions, a representative example is the respective term
proposed in [19]. In this work, a gaussian filter is used to obtain the image gradient, but
an appropriate value of the gaussian variance is required, which is done manually. Fig. 5
illustrates the difference between the proposed external energy term and the one proposed
in [19].

III. The Proposed Tracking Approach

Object tracking actually concerns the separation of moving objects from background
[24], which is done so far in two different ways: (a) the motion-based approaches that rely
on grouping motion information over time and (b) the model-based approaches that impose
high-level semantic representation and knowledge. In these approaches either geometrical
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(a) (b)

Fig. 5. Qualitative comparison between (a) a representative example of external energy term,
using gaussian filtering, and (b) the proposed external energy term.

properties or region-based features of the desired objects are extracted and utilized. Thus
the methods proposed in the literature can categorized in edge-based methods [15], which
rely on the boundary information, and region-based ones [22], utilizing the information
provided by the interior region of the tracked objects.
The main problems that tracking approaches are called upon to cope with are non-rigid
(deformable) objects, objects with complicated (not smooth) contours, object movements
that are not simple translations and movement in natural sequences, where background
is usually complicated and the amount of noise or the external lighting changes are not
known. The latter has been a motivation for many researchers, especially in the last years,
to follow probabilistic approaches, e.g [27]. In addition, a more difficult problem emerges
in many sequences, the occlusion, i.e when moving objects get occluded successively as
time passes; this requires some assumptions about the shape, region or motion of the
tracked object in order to estimate its contour even in regions that are covered by other
moving or static objects. In the following we describe the proposed approach, which aims
to cope with the above mentioned problems.
The proposed method consists of two main steps: the extraction of the “uncertainty
regions” of each object in a sequence, and the estimation of the mobile object contours.
The term “uncertainty regions” is used to describe the regions in a frame, where moving
contours are possible to be located, whereas the estimation of the contours consists of
an energy minimization procedure based on the proposed snake energy terms, described
in Section II. More specifically, the contour of a moving object is estimated first in a
few successive frames of a sequence; this can be achieved with appropriate parameter
initialization utilizing the proposed snake model. Then, for the next frames, a force-
based approach is being followed to minimize the total snake energy inside the respective
uncertainty regions, which are extracted using the displacement history of each point
of the contour. The force-based approach is adopted as an alternative to direct energy
minimization, while some rules are introduced to separate objects from background and
to detect possible occlusions.

A. Uncertainty Region Estimation

The minimization procedure of snake’s total energy is actually a problem of picking out
the “correct” curve in the image, i.e. the curve which corresponds to the object of interest
among a set of candidate curves, given an initial estimate of the object’s contour. In this
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Section we propose a way to determine a region around the snake initialization, for each
frame of a video sequence, in which the correct curve is located. This idea is not new, as
stochastic models have been lately proposed in the literature, mostly as shape prior knowl-
edge [28], to define possible positions of the curve points around an initialization. In the
same direction, we introduce here the term “uncertainty region”, which denotes that the
minimization procedure (or the picking out of the correct curve) takes place inside that
region, constraining the problem inside a narrow band around the snake initialization.
Such regions are extracted by exploiting the motion history of the tracked contour (curve
points’ displacements in previous time instances), extracting statistical measurements of
the motion: the previously estimated contour is deformed according to the previously cal-
culated point displacements (initialization for the next frame) and the standard deviation
of each point’s mean motion is calculated; the uncertainty region around each point is
then defined in terms of its corresponding standard deviation. The next step is to find the
new position of each point of the curve, inside its corresponding uncertainty region, which
corresponds to the minimum of a criterion, which is defined by the snake’s energy terms
described Section II.
Let us define the contour of an object, located in the I-th frame (I > 1), of a video
sequence as a vector of complex numbers, i.e.,

C(I) = [x(I)
i + j · y(I)

i |i = 1, ..., N ] = [C(I)
(1) , ..., C

(I)
(N)], (14)

where C
(I)
(k) = x

(I)
k + j · y(I)

k is the location of the k-th point of the contour. We define the
instant motion of the k-th point of the object contour, computed in the I-th frame, as:

m
(I)
c,k = MF (I−1,I)(xk, yk), (15)

where MF (I−1,I)(xk, yk) is the motion vector of the pixel (xk, yk) estimated with the use of
a robust motion estimation technique proposed by Black et al. [2], between the successive
frames I − 1 and I.
Based on the definition of the instant motion, we calculate the mean movement of the
contour C up to frame I as:

m̄(I)
c = [m̄(I)

c,1 , ..., m̄
(I)
c,N ] (16)

where

m̄
(I)
c,k = m̄

(I)
x,k + j · m̄(I)

y,k =
1

I − 1

I−1∑

i=1

m
(i+1)
c,k (17)

is the corresponding mean movement of the k-th point of the contour.
Similarly the standard deviation of contour’s mean movement is defined as:

s̄(I)
c = [s̄(I)

c,1 , ..., s̄
(I)
c,N ] (18)

where

s̄
(I)
c,k = { 1

I − 1

I−1∑

i=1

(m̄(I)
x,k −m

(i+1)
x,k )2} 1

2 + j · { 1
I − 1

I−1∑

i=1

(m̄(I)
y,k −m

(i+1)
y,k )2} 1

2 (19)
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is the standard deviation of k-th point’s mean movement.
In practice, equations (17) and (19) are computed based on the last L frames so as to take
into account only the recent history of contour’s movement, i.e.,

m̄
(I)
c,k =

1
L

I−1∑

i=I−L

m
(i+1)
c,k (20)

s̄
(I)
c,k = { 1

L

I−1∑

i=I−L

(m̄(I)
x,k −m

(i+1)
x,k )2} 1

2 + j · { 1
L

I−1∑

i=I−L

(m̄(I)
y,k −m

(i+1)
y,k )2} 1

2 (21)

The initial estimation of the object’s contour C(I+1)
init in the frame I +1 is computed based

on the contour’s current location and:
(a) its mean motion, when no abrupt movements are expected to occur, i.e.,

C(I+1)
init = C(I) + m̄(I)

c , (22)

or
(b) its instant motion, when no knowledge about the motion of the desired object is
available, i.e.,

C(I+1)
init = C(I) + m(I+1)

c , (23)

where m(I+1)
c = [MF (I,I+1)(xi, yi)|i = 1, ..., N ] = [m(I+1)

(c,1) , ..., m
(I+1)
(c,N) ].

The final solution, i.e. the desired contour C(I+1) = [C(I+1)
(k) |k = 1 . . . N ], is obtained by

solving the following equations:

C(I+1) = arg min
V∈R

{w1 ·Eext(V) + w2 · [µ1 · (D(I)
CU (V) + D

(I)
DV (V)) + µ2 ·Emodel(V)]} (24)

D
(I)
CU (V) =

N∑

k=1

{CU(C(I)
(k))− CU(Vk)}2 (25)

D
(I)
DV (V) =

N∑

k=1

{DV (C(I)
(k))−DV (Vk)}2 (26)

Eext(V) and Emodel(V) are given by equations (3) and (8) respectively, CU(C(I)
(k)) and

DV (C(I)
(k)) are the curvature and the point density values of the contour C(I) at the k-th

point. Parameters w1 and w2 represent the weights with which the energy-based terms of
equation (24) participate in the minimization procedure, whereas µ1 and µ2 control the
model’s influence on the final solution; more about these weights is discussed in paragraph
III-C.
The set of all possible curves R, defining the uncertainty region, emerge by oscillating the
points of the curve C(I+1)

init according to the standard deviation of their mean movement,
computed using the equations (18) and (21). The Gaussian formulation for the point
oscillations is mainly adopted to show that each point of the curve is likely to move in
the same way (amplitude and direction) that it has been moving until the current frame.
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(a) (b)

(c) (d)

Fig. 6. The proposed tracking approach in steps. (a)-(b) Two successive frames of a face sequence
and the respective contours. (c) Amplitude of the standard deviation of the contour mean motion
leading to (d) the uncertainty regions of the curve.

In this way and for each contour point Vk, an uncertainty region is defined. If C
(I)
(k) is the

location of the k-th point of the contour in frame I and this point was static during the
previous L frames then s̄

(I)
c,k = 0 and its uncertainty region shrinks to a single point whose

location coincides with C
(I+1)
init,(k). If point k was moving with invariable velocity then the

standard deviation of its movement is again s̄
(I)
c,k = 0 and the previous case holds regarding

its uncertainty region. On the other hand, if point k was oscillating in the previous L
frames, the standard deviation of its movement is high and consequently its uncertainty
region is large. Figure 6 illustrates the proposed approach in steps, in the case of face
tracking. Figures 6(a) and 6(b) present two successive frames of a face sequence and
the respective contours. Figure 6(c) presents the amplitude of the computed standard
deviation (in pixels) of the contour mean motion, and based on this standard deviation,
the uncertainty regions are then extracted (Fig. 6(d)).

B. Force-Based Approach

The minimization of the equation (24) is a procedure of high complexity: if N is the
number of points consisting the examined curve C and M is the number of all possible
positions of each curve point C

(I+1)
init,k inside the extracted uncertainty region, assuming

that M is the same for all points, then the number of all possible curves r ∈ R generated
by points’ oscillations is MN . In order to avoid that problem, we propose a force-based
approach (instead of using a dynamic programming algorithm) where the energy terms,
participating in the snake energy function, are transformed into forces applied in each
curve point so as to converge to the desired object boundaries.
Let us consider the curve V describing the object’s contour. The object’s contour at frame
I is given by C(I), and its initialization at frame I + 1 is given by C(I+1)

init . Let also t be
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Fig. 7. Curvature-based and point density-based forces F c and F d, respectively, along the initial-
ization of a curve V in the frame I + 1.

the set of the tangential unit vectors and n the set of the normal vectors of curve V, given
by equations (27):

t = [tk|k = 1 . . . N ], n = [nk|k = 1 . . . N ],

tk =
∇V|k
‖∇V|k‖ , nk =

∇t|k
‖∇t|k‖ (27)

We define the following forces acting at each contour point Vk:

F d(Vk) = D
(I)
DV (Vk) · tk = [DV (C(I)

(k))−DV (Vk)] · tk (28)

F c(Vk) = D
(I)
CU (Vk) · nk = [CU(C(I)

(k))− CU(Vk)] · nk (29)

Fd = [F d(k)|k = 1, . . . , N ] represents the stretching component that forces points to come
closer or draw away from each other along the curve, and it is always tangential to it.
Thus, if the distance between two curve points C(I)

(k) and C(I)
(k+1) is greater than the dis-

tance between Vk and Vk+1, then F d(Vk) · tk > 0 and Vk is forced to draw away from Vk+1;
otherwise, F d(k) · tk < 0 and Vk is forced to come closer to Vk+1.
Fc = [F c(k)|k = 1, . . . , N ] represents the deformation of the curve along its normal di-
rection. The property of the curvature distribution to take low values where the curve is
relatively smooth and high values where the curve has strong variations, makes Fc force
curve to the initial shape (the one in the previous frame) and not to a smoother form.
Moreover, we exploit the curvature’s property to be positive where the curve is convex
and negative where the curve is concave. Fig. 7 illustrates the directions of F c and F d

along a curve.
These forces represent the internal snake forces that deform the curve V, initialized at

C(I+1)
init , according to the shape of the contour C(I) in the previous frame. The constraint

of such a deformation is actually the first term of equation (24), i.e the external energy
Eext, which is transformed into force as described in the following.
Let us define gm,k(p), given by (30), be the modified image gradient function of all pixels
p = xp +j ·yp that: (a) belong to the uncertainty region U, and (b) lie on the line segment
that is defined by the normal direction of the curve V at point Vk.

gm,k(p) = [Gm(p) | (Vk − p)T · nk = 1, p ∈ U] (30)
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The maximum of this function determines the most salient edge-pixel in the line segment
defined above and thus defines the direction of the external snake force:

pk = arg max
p

[gm,k(p)], (31)

sgnk =

{
+, if pk inside the area defined by V
−, otherwise

(32)

where sgnk denotes the sign/direction of the external force to be applied to Vk.
Then, the external snake force for each point Vk is given by:

F e(Vk) = sgnk · eext(Vk) · nk (33)

From the definition of the external energy term (equation (13)) it can be seen that it
takes values close to zero in contour points corresponding to regions with high image gra-
dient (G2

m(Vk) ' 1) and values close to unity in regions with relatively constant intensity
(G2

m(Vk) ' 0). Thus, the term Fe = [F e(k)|k = 1, . . . , N ] is proportional to Gm and forces
the curve to the salient edges inside the extracted uncertainty region. In the definition of
this force we exploit the advantage of Gm against |∇Gσ∗I|, to preserve the most important
edges, as shown before, and thus the problem of the existence of many local maxima in
equation (31) is eliminated.
In the force-based approach, the examined curve V marches towards the object’s bound-
aries in the next frame I +1, according to the forces applied to it. Thus, the minimization
of equation (24) can be approximated by using the internal and external snake forces de-
fined above, in an iterative manner similar to the steepest descent approach [12], as it is
summarized below. In particular, let V(ξ) be the estimated contour in the ξ-est iteration,
then the following equations hold:

V(0) = C(I+1)
init (34)

V(ξ) = V(ξ−1) + ∆V(ξ) (35)

∆V(ξ) = [{V (ξ−1)
k }T · F tot(V

(ξ−1)
k ) | k = 1 . . . N ] (36)

F tot(V
(ξ−1)
k ) = w1 ·F e(V

(ξ−1)
k )+w2 · [µ1 · {F c(V

(ξ−1)
k )+F d(V

(ξ−1)
k )}+µ2 ·Fmodel(V

(ξ−1)
k )]

(37)
where F d(V

(ξ−1)
k ), F

(
cV

(ξ−1)
k ) and F

(
eV

(ξ−1)
k ) are estimated according to equations (28),

(29) and (33) respectively, and Fmodel(V
(ξ−1)
k ) is the regularization force, according to the

specific model adopted, given by:

Fmodel(V
(ξ−1)
k ) = λ · {V (ξ−1)

k (s)−model(V (ξ−1)
k (s))} (38)

It is clear from the above definition that Fmodel(Vk) forces contour point V
(ξ−1)
k towards

the model point model(V (ξ−1)
k (s)).

The final curve V corresponding to the contour C(I+1) is obtained when one of the fol-
lowing criteria is satisfied: (a) Fτ (V(ξ)) < a · Fτ (V(ξ+1)), where

Fτ (V(ξ)) =
N∑

k=1

|F tot(V
(ξ)
k )| (39)
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Parameter a is a positive constant in the range 0 < a < 1. When a is selected to be
close to one C(I+1) is more likely to correspond to a local minimum solution; lower values
of a increase the number of iterations and, therefore, the execution time. The statistical
approach we follow to estimate the regions of uncertainty allows for the use of a close to
one.
(b) The maximum number of iterations is reached. In this case

C(I+1) = V(ξ̃) (40)

ξ̃ = arg min
ξ

[Fτ (V(ξ))] (41)

It must be noted that the use of the proposed steepest descent approach does not ensure
that the final contour corresponds to the solution of the equation (24). However, under
the constraints we pose, even if C(I+1) corresponds to a local minimum, it is close to the
desired solution (global minimum).

C. Weights Estimation

In equations (24) and (37) four energy and force terms, respectively, participate in the
minimization procedure with different weights w1, w2, µ1 and µ2. The choice of appropri-
ate values for these weights is important for the method’s performance. The values should
be set depending on the amount of the background complexity and the smoothness of the
object silhouette. For sequences with relatively smooth background (without any signif-
icant edges close to object boundaries, or edges far from object boundaries) the curve’s
external energy/force term is used as a reliable criterion and thus w1 is set to higher value.
Moreover, if the contour of the tracked object is complicated (not smooth) or noisy, the
elasticity and smoothness energy/force terms are not reliable and thus w2 is set to lower
values.
In order to automatically estimate the value of w2, it suffices to count the curvature and
point density distributions’ zero-crossings, which can give us the contour’s local smooth-
ness/elasticity. To estimate the value of w1, it suffices to calculate the mean values of the
external energy at all pixels p inside the extracted uncertainty region U (as verified by
trial and error). Thus, smooth background inside the uncertainty region results in higher
mean values and w1 is set to a higher value, whereas low mean values correspond to cases
of complex/noisy uncertainty regions (great number of edge-pixels) and w1 is set to a lower
value.
Fig. 8 illustrates three different sequences capturing moving objects of different contour
complexities. Figs. 8(a,d,g) represent the original images along with the moving object
contours. At the first sequence, the background is relatively smooth and the object (car)
has a uncomplicated contour. In the case of the aircraft, the background is also smooth but
the contour is quite complicated, whereas in the third case, the walking man’s contour is
simple but the background is very cluttered. The respective external energies visualization
is illustrated in Figs. 8(b,e,h) where the background complexity can be clearly seen; the
modified image gradient preserves the most salient edges and eliminates noise. Finally, in
Figs. 8(c,f,i) the complexity of the respective object contours is presented in terms of the
curvature. The first and the second subplots of each case illustrate the x and y coordinate
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Fig. 8. Curvature and external energy terms. (a,d,g) different cases of curves and background
complexity, (b,e,h) respective external energies visualization and (c,f,i) respective curvature distri-
butions.

distributions along the curves, whereas the third subplot represents the curvature distri-
bution. As can be seen, the complexity of the contours is determined by the curvature
variations, i.e the curvature’s zero-crossings: if Zc,car, Zc,aircraft and Zc,man are the num-
bers of the respective zero-crossings and Ncar, Naircraft, Nman are the number of points
consisting the three contours, then Zc,car

Ncar
' 0.03, Zc,aircraft

Naircraft
' 0.08 and Zc,man

Nman
' 0.05.

The parameters µ1 and µ2 related to the internal snake force can be set according to the
application under consideration. If strict prior model knowledge is available (e.g. medical
applications), then the model can strongly influence the solution. In the contrary, if there
is no high certainty regarding the model prior, then the first term of the internal force
should affect more the solution. This competitive relation of the two internal force terms
can be easily represented by allowing one of them to change according to the other in a
functional manner (µ1 = f(µ2)).

D. Rule-driven Approach for Complex Background and Partial Occlusion Cases

In order to separate background and object regions, especially when the background in
not homogeneous (smooth), as well as to cope with moving object’s partial occlusion that
may occur, we introduce more constraints that pk in equation (31) must obey, so that
its estimation will be reasonable. The adopted motion estimation technique [2] ensures
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the distinction between moving background and foreground even in hard to detect cases
(slightly different movements). Therefore, without loss of generality, we suppose that the
background is static and possible occluding objects are also static. Let m̄

(I)
c,k be the mean

estimated motion of the k-th contour point at frame I, estimated through equation (17) or
by any motion estimation algorithm as shown in Fig. 14, and pl and pm be the surrounding
pixels of pk on the line segment, along which the function gm,k(p) is computed. Then pk

must fulfill the following two constraints/requirements:
(a) pk must divide that line segment in two parts: an immiscibly moving and an immiscibly
static one, that is 




u(pl) ' m̄
(I)
c,k and u(pm) ' 0

or

u(pl) ' 0 and u(pm) ' m̄
(I)
c,k





. (42)

and
(b) pk must be a moving point with velocity close to m̄

(I)
c,k , that is

u(pk) ' m̄
(I)
c,k (43)

where u(·) denotes the instant velocity.
Thus, taking the above constraints into consideration, we overcome cases such as (a) when
the maximum is found in background: it is not a moving one and does not separate two
immiscible (according to the motion) parts of the function gm, (b) when the maximum
is found inside the moving object region: although it is a moving one, it does not divide
the function gm in such two parts, (c) when occlusion occurs and the maximum is on the
occluding object boundary: the maximum is not moving, although it makes the region
gm separation and (d) when occlusion occurs and the maximum is in the occluding object
region: neither the maximum is moving, nor it makes such a separation. In these cases,
where these two constraints are not reached, we ignore the external force and evolve the
curve according to its internal forces; in this way, we can obtain contours similar to the
ones in the past frames. Fig. 9 illustrates the detection of occlusion with the use of the
above defined rules that the local maximum pk (shown as minimum), corresponding to a
curve point k, must obey. It has to be mentioned that treating large occlusions is limited
by the capabilities of the estimated motion field.

IV. Experimental Results

The performance of the proposed approach is tested over a large number of natural
sequences, where specific tracking problems emerge. The results presented in this sec-
tion concern cases of different object shape complexities, different motions, noisy video
sequences, complicated backgrounds, as well as partial occlusion. Finally, a specific appli-
cation of the proposed method is shown, where the desired objects are human heads. It
has to be mentioned that the contour initialization for the first frame in a sequence is done
manually. The adopted time-window parameter L (number of past successive frames) is
set to 5 for all the sequences under consideration. Additionally, the motion at the very
first frame of each sequence is supposed to be zero
Fig. 10 illustrates the case of tracking an object with complicated contour (low smooth-
ness) moving in front of a relatively smooth background. In such a case, weight w1 of
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Fig. 9. Detection of occlusion using the two rules of eqs. (42) and (43) for the local minimum pk

of the function 1− gm,k(p).

equations (24) and (37) is significantly greater than w2 ([w1, w2] = [10, 1]). In this case
the desired object (aircraft) is moving towards the shooting camera and even if the object
is rigid, its projection on the image plane is deforming (its contour expands) along the
time.
In Fig. 11 the case of car tracking in six successive frames of a traffic sequence is presented.
In this example the desired object (car) is moving towards the camera and although it is
rigid, its projection on the image plane is slowly deforming along time, as in the previ-
ous example. In this case, the sequence is more cluttered, although the car silhouette is
smoother. The utilization of image pre-smoothing with the ASF and the modified image
gradient, used for the external snake energy definition as described in Section II, result to
the estimation of such accurate contours.
Fig. 12 illustrates the method’s performance in a strongly cluttered sequence, where the
object is non-rigid and its motion projection is both rotational and translational rather
than a simple translation or expansion/shrink. The low accuracy of the method in this
case is mainly due to the large uncertainty regions extracted; on the other hand, the object
is well detected localized in each frame of the sequence, due to the snake’s external energy
definition through the ASF pre-filtering and the image modified gradient estimation.
In Fig. 13, the proposed approach is applied to a strongly cluttered sequence, where the
desired object is a man walking in one direction. The contour of the moving human body is
strongly deforming along time, resulting to large uncertainty regions, whereas the weights
w1 and w2 are estimated to values 1 and 10 respectively. The accuracy of the method is
based on the snake’s external energy definition and the rule-driven approach described in
Subsection III-D.
Fig. 14 illustrates a case of two moving objects, where, as time goes by, the one is get-
ting partially occluded by a static obstacle, while the other is moving in the front of the
obstacle. In sub-figs. 14 (a1-f1), the motion estimates are illustrated, showing that the
noise is effectively eliminated on the boundaries between the static and moving regions
even when the occlusion occurs, whereas the respective sub-figs. 14 (a2-f2) show that both
objects’ contours are estimated with sufficient accuracy, due to the additional constraints
(equations (42) and (43)), in which the maximum of equation (31) is imposed.
In order to demonstrate the efficiency of the proposed approach we also evaluate the results
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of our technique applied to head (face) extraction. Obtaining quantitative results for such
an application area is hard since no extensive ground-truth databases are available today.
Therefore, in order to quantitatively assess the improvement to our algorithm achieved
by the addition of the geometrical model we generated ground-truth masks for available
sequences.
Fig. 15 shows the ground-truth masks for selected frames. The presence of noise is strong
since these sequences are extracted from TV clips. Consequently, the developed technique
faces several difficulties not only due to occlusion/clutter cases but also due to vaguely
defined object borders (weak gradient). The ground-truth database consists of 100 images.
Figs. 16 and 17 show specific applications of the tracking method with and without the
geometrical model for head contour tracking. We present representative example frames
from the TV clip collection and comment on the various difficulties introduced. Even
though the head is a rigid object, its contour is being deformed on the image plane along
the time, due to the projection of its motion. The head contours produced by the rule-
driven model-based approach (Fig. 17) are obtained using an ellipsoid as shape prior.
In order to get a visual grip of the way that an ellipsoid (par. II-A.1) affects the contour
deformation we present the results in two ways: we superimpose (a) the ellipse model
(soft) and the non-model based contour (Fig. 16), and (b) the model-based (bold) and
the non-model-based contour on the original image (Fig. 17). Obviously, as illustrated
at Fig. 16 an ellipsoid may affect the contour evolvement positively (Fig. 16(a1)-(d1)
case), since it fits well with the actual head contour or negatively due to strong fluctua-
tions from the actual head shape (Fig. 16(a2)-(d2) case- forehead area). We expect that
the competitive nature of the different forces in the total energy formula will produce an
acceptable result in terms of accuracy and total shape. Fig. 17 shows the final results of
the proposed technique that meet our expectations. The obtained contours are smooth
and capture accurately the side regions of the head, as shown clearly in Figs. 17(a1)-(d1)
and (a2)-(d2). The actual head contour of Fig. 17(a4)-(d4) case is fairly different than
the corresponding ”perfect” ellipsoid (Fig. 17(a4)-(d4) case) since our ground-truth gen-
eration is merely based on skin presence. However the final model-based contour seems
to be much closer to the shape of a head and therefore it can be treated as a better way
to verify the presence of a human head in a sequence even in the case of partial occlusion
(due to hair in the considered case).
Additionally, we provide a table with precision and recall measurements for the selected
sequences in order to verify the improvement imposed by the model-based approach. As
mentioned before, we extracted the ground-truth masks based on skin activation. Conse-
quently, we expect slightly lower precision than recall values, since areas covered e.g. by
hair may be considered as ”head”, but they are not included in the ground-truth masks.
Table I compares the recall/precision values for the 16 selected frames used in Figs. 16-17
and gives the overall values for the 100 images we tested.

V. Conclusions and Further Work

In this work we have presented a probabilistic application of Snakes for object tracking
in clutter, partial occlusion and complex backgrounds. Statistical measurements of the
object contour motion history are extracted to obtain uncertainty regions, in which the
estimated contours are to be localized. In this way we constrain the solution in a narrow
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Frame Recall percent.
(No Model)

Precision percent.
(No Model)

Recall percent.
(Model)

Precision percent.
(Model)

a1 89.08 100.00 94.52 100.00
b1 87.01 100.00 100.00 97.44
c1 90.09 100.00 98.17 100.00
d1 90.09 100.00 98.17 100.00
a2 98.38 100.00 100.00 99.54
b2 98.63 100.00 95.14 100.00
c2 98.76 100.00 95.17 100.00
d2 100.00 96.68 100.00 99.52
a3 100.00 91.04 100.00 99.78
b3 100.00 94.18 95.55 100.00
c3 100.00 91.64 98.48 100.00
d3 100.00 91.26 99.62 100.00
a4 100.00 93.88 100.00 93.90
b4 100.00 97.29 100.00 91.60
c4 100.00 98.12 100.00 84.85
d4 100.00 97.09 100.00 97.83

TOTAL 95.05 93.16 97.24 95.84

TABLE I
Recall and precision values, comparing the ground-truth results with the ones

obtained using the proposed method with and without the shape prior model.

band around the next frames snake initialization; moreover utilizing various tools from
image morphology, we eliminate noise. This approach is extended to cope with complex
background and partial occlusion, introducing rule-based knowledge to separate objects
from background and to detect occlusion. Finally, for specific applications where the
desired object contours can be approximated by specific models, we use a shape prior
knowledge in addition to the rule-driven approach so as to obtain more accurate contours.
As indicated before, in this work our goal is to illustrate the increased robustness of
the proposed method with the addition of a model rather than incorporating a novel
prior constraint representation. Therefore, the future direction of our work is a more
sophisticated representation and use of generalized geometric-based models, which will
permit the method to deal even more efficiently with occlusions and perform tracking under
various conditions (e.g. static or mobile camera). In this sense, a possible extension can
be the incorporation of region-based tracking modules to the existing framework that will
increase robustness. Additionally, covering large occlusions cases would require extensions
of the method, e.g. using higher level representation of the moving regions, which is a
topic of future research. We are currently examining such issues using ”semantics” and
ontological knowledge techniques in the framework of [36].
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(a) (b) (c)

Fig. 10. Example of tracking an aircraft approaching the airport: the case of complicated tracked
contour with smooth background.

(a) (b) (c)

(d) (e) (f)

Fig. 11. A moving car tracking in six (a,b,c,d,e,f) successive frames of a traffic sequence. The
background is relatively smooth close to car’s boundary, while the car’s contour is not very com-
plicated.

(a) (b) (c)

Fig. 12. Object tracking in strong existence of clutter. For each of the transitions (a)-(b) and
(b)-(c), the estimated weights are [w1, w2] = [1, 10], since the background is not smooth enough.
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(a) (b) (c)

(d) (e) (f)

Fig. 13. Example of a man walking in a cluttered sequence. The main source of inaccuracies is
the weak edges of the human body (especially close to the head). We choose [w1, w2] = [1, 10] to
reduce the effect of the background complexity.
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

(e1) (e2)

(f1) (f2)

Fig. 14. Occlusion case: motion vectors and obtained object contours, utilizing the rule-driven
tracking approach.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Fig. 15. Ground-truth masks for selected frames of four TV sequences.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Fig. 16. Face tracking results of the proposed rule-based method, without applying the model-
based term: the final results (contours) are illustrated in bold, whereas the shape prior (ellipse),
to be further applied (16), is shown in soft lines.
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Fig. 17. Face tracking results of the proposed method, after applying the model-based (shape
prior) term: the final contours are illustrated in bold, whereas the results obtained without the
shape prior (15), are shown in soft lines.


